An alternative proof of a Tauberian theorem for the weighted mean summability of integrals over R_{+}
نویسندگان
چکیده
منابع مشابه
An alternative proof of a Tauberian theorem for Abel summability method
Using a corollary to Karamata’s main theorem [Math. Z. 32 (1930), 319—320], we prove that if a slowly decreasing sequence of real numbers is Abel summable, then it is convergent in the ordinary sense. Subjclass [2010] : 40A05; 40E05; 40G10.
متن کاملA Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix. If for each x ∈ X the series An(x) = ∑∞ k=0 ankxk converges for each n and the sequence Ax = (Anx) ∈ Y we say that the matrix A maps X into Y . By (X,Y ) we denote the set of all matrices which map X into Y . Let c be the set of all convergent sequences. A matrix A is called regular if A ∈ (c, c) and limn→∞Anx = limk→∞ xk f...
متن کاملA Tauberian Theorem for the Generalized Nörlund-euler Summability Method
Let (pn) and (qn) be any two non-negative real sequences with Rn := n ∑ k=0 pkqn−k 6= 0 (n ∈ N). And E1 n− Euler summability method. Let (xn) be a sequence of real or complex numbers and set N p,qE 1 n := 1 Rn n ∑
متن کاملOn Tauberian Conditions for (c, 1) Summability of Integrals
We investigate some Tauberian conditions in terms of the general control modulo of the oscillatory behavior of integer order of continuous real functions on [0,∞) for (C, 1) summability of integrals. Moreover, we obtain a Tauberian theorem for a real bounded function on [0,∞).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Creative Mathematics and Informatics
سال: 2020
ISSN: 1843-441X,1584-286X
DOI: 10.37193/cmi.2020.01.06